The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A160490 The p(n) sequence that is associated with the Lambda triangle A160487 2
 12, 1440, 907200, 101606400, 100590336000, 172613016576000, 31415569016832000, 256351043177349120000, 4471274895099323351040000, 8495422300688714366976000000, 90272357367118278863486976000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 LINKS MAPLE nmax:=11; for n from 0 to nmax do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for n from 1 to nmax do Delta(n-1) := sum((1-2^(2*k1-1))* (-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1, n-k1), k1=1..n) /(2*4^(n-1)*(2*n-1)!); LAMBDA(-2, n) := sum(2*(1-2^(2*k1-1))*(-bernoulli(2*k1)/ (2*k1))*(-1)^(k1+n)* cfn2(n-1, n-k1), k1=1..n) / factorial(2*n-2) end do: Lcgz(2) := 1/12: f(2) := 1/12: for n from 3 to nmax do Lcgz(n) := LAMBDA(-2, n-1)/((2*n-2)*(2*n-3)): f(n) := Lcgz(n)-((2*n-3)/(2*n-2))*f(n-1) end do: for n from 1 to nmax do b(n) := denom(Lcgz(n+1)) end do: for n from 1 to nmax do b(n) := 2*n*denom(Delta(n-1))/2^(2*n) end do: p(2) := b(1): for n from 2 to nmax do p(n+1) := lcm(p(n)*(2*n)*(2*n-1), b(n)) end do: seq(p(n), n=2..nmax+1); CROSSREFS A160487 is the Lambda triangle. Equals 6*(2*n-2)!*A160476(n). Sequence in context: A271514 A181856 A161149 * A276905 A015096 A271434 Adjacent sequences:  A160487 A160488 A160489 * A160491 A160492 A160493 KEYWORD easy,nonn AUTHOR Johannes W. Meijer, May 24 2009, Sep 18 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 13:36 EDT 2020. Contains 337264 sequences. (Running on oeis4.)