login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158257
G.f.: A(x) = exp(Sum_{n>=1} Lucas(n)*L(n)*x^n/n) such that Sum_{n>=1} L(n)*x^n/n = log(1+x*A(x)) where L(n) = A158258(n) and Lucas(n) = A000204(n).
2
1, 1, 2, 7, 44, 458, 7953, 225761, 10470604, 789302962, 96596105976, 19162936947418, 6158621106553275, 3204835468356347519, 2699695571885775547222, 3680716263445262350996413
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 44*x^4 + 458*x^5 + 7953*x^6 +...
log(1+x*A(x)) = x + x^2/2 + 4*x^3/3 + 21*x^4/4 + 186*x^5/5 + 2482*x^6/6 +...
log(A(x)) = x + 3*x^2/2 + 16*x^3/3 + 147*x^4/4 + 2046*x^5/5 + 44676*x^6/6 +...
log(A(x)) = x + 3*1*x^2/2 + 4*4*x^3/3 + 7*21*x^4/4 + 11*186*x^5/5 + 18*2482*x^6/6 +...
PROG
(PARI) {a(n)=local(A=1+x); if(n==0, 1, for(i=1, n, A=exp(sum(m=1, n, (fibonacci(m-1)+fibonacci(m+1))*x^m*polcoeff(log(1+x*A+x*O(x^m)), m))+x*O(x^n))); polcoeff(A, n))}
CROSSREFS
Cf. A158258, A158107 (variant), A000204 (Lucas).
Sequence in context: A346258 A242105 A001046 * A348857 A172389 A153522
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 28 2009
STATUS
approved