login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158254
a(n) = 289n^2 + 2n.
2
291, 1160, 2607, 4632, 7235, 10416, 14175, 18512, 23427, 28920, 34991, 41640, 48867, 56672, 65055, 74016, 83555, 93672, 104367, 115640, 127491, 139920, 152927, 166512, 180675, 195416, 210735, 226632, 243107, 260160, 277791, 296000, 314787
OFFSET
1,1
COMMENTS
The identity (289*n+1)^2-(289*n^2+2*n)*(17)^2=1 can be written as A158255(n)^2-a(n)*(17)^2=1.
LINKS
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(17^2*t+2)).
Vincenzo Librandi, X^2-AY^2=1
FORMULA
G.f.: x*(291+287*x)/(1-x)^3. Also a(n) = (A158255(n)+1)*n. - Bruno Berselli, Mar 21 2011
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {291, 1160, 2607}, 50]
Table[289n^2+2n, {n, 40}] (* Harvey P. Dale, Jun 05 2013 *)
PROG
(Magma) I:=[291, 1160, 2607]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
(PARI) a(n) = 289*n^2 + 2*n.
CROSSREFS
Cf. A158255.
Sequence in context: A090890 A123913 A031695 * A088892 A098248 A185999
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 15 2009
STATUS
approved