login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158255 289n + 1. 2
290, 579, 868, 1157, 1446, 1735, 2024, 2313, 2602, 2891, 3180, 3469, 3758, 4047, 4336, 4625, 4914, 5203, 5492, 5781, 6070, 6359, 6648, 6937, 7226, 7515, 7804, 8093, 8382, 8671, 8960, 9249, 9538, 9827, 10116, 10405, 10694, 10983, 11272, 11561 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The identity (289*n+1)^2-(289*n^2+2*n)*(17)^2=1 can be written as a(n)^2-A158254(n)*(17)^2=1.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Vincenzo Librandi, X^2-AY^2=1

E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(17^2*t+2)).

Index entries for linear recurrences with constant coefficients, signature (2,-1).

FORMULA

G.f.: x*(290-x)/(1-x)^2. - Bruno Berselli, Mar 21 2011

a(n) = 2*a(n-1)-a(n-2).

MATHEMATICA

289Range[50]+1 (* Harvey P. Dale, Mar 21 2011 *)

LinearRecurrence[{2, -1}, {290, 579}, 50]

PROG

(Magma) I:=[290, 579]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]];

(PARI) a(n)=289*n+1 \\ Charles R Greathouse IV, Mar 22, 2011

CROSSREFS

Cf. A158254.

Sequence in context: A332229 A296055 A090839 * A295483 A075299 A031712

Adjacent sequences: A158252 A158253 A158254 * A158256 A158257 A158258

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Mar 15 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 09:43 EST 2022. Contains 358585 sequences. (Running on oeis4.)