OFFSET
0,3
FORMULA
L.g.f.: exp(Sum_{n>=1} a(n)*x^n/n) = 1 + x*G(x) where G(x) = g.f. of A158257.
exp(Sum_{n>=1} a(n)*x^n/n) = (1 + Sum_{n>=1} Lucas(n)*a(n)*x^n) / (1 + Sum_{n>=1} (Lucas(n)-1)*a(n)*x^n).
EXAMPLE
L.g.f.: A(x) = x + x^2/2 + 4*x^3/3 + 21*x^4/4 + 186*x^5/5 + 2482*x^6/6 +...
exp(A(x)) = 1 + x + x^2 + 2*x^3 + 7*x^4 + 44*x^5 + 458*x^6 + 7953*x^7 +...
exp(A(x)) = 1 + x*G(x) where G(x) is the g.f. of A158257 such that:
log(G(x)) = x + 3*1*x^2/2 + 4*4*x^3/3 + 7*21*x^4/4 + 11*186*x^5/5 + 18*2482*x^6/6 +...
PROG
(PARI) {a(n)=local(A=x+x^2); if(n==0, 1, for(i=1, n-1, A=log(1+x*exp(sum(m=1, n, (fibonacci(m-1)+fibonacci(m+1))*x^m*polcoeff(A+x*O(x^m), m) )+x*O(x^n)))); n*polcoeff(A, n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 28 2009
STATUS
approved