login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158259
L.g.f.: exp(Sum_{n>=1} a(n)*x^n/n) = 1 + x*exp(Sum_{n>=1} C(2n-1,n)*a(n)*x^n/n) where C(2n-1,n) = A001700(n-1).
1
1, 1, 4, 53, 2321, 351010, 189198136, 371045084781, 2686134761118382, 72555484959298332681, 7372783651816395650943931, 2836907736669733620359204710274, 4155363917021399525198623243750199333
OFFSET
0,3
FORMULA
L.g.f.: exp(Sum_{n>=1} a(n)*x^n/n) = 1 + x*G(x) where G(x) = g.f. of A158109.
exp(Sum_{n>=1} a(n)*x^n/n) = [1 + Sum_{n>=1} C(2n-1,n)*a(n)*x^n]/[1 + Sum_{n>=1} (C(2n-1,n)-1)*a(n)*x^n].
EXAMPLE
L.g.f.: A(x) = x + 1*x^2/2 + 4*x^3/3 + 53*x^4/4 + 2321*x^5/5 +...
exp(A(x)) = 1 + x + 2*x^2 + 15*x^3 + 479*x^4 + 58981*x^5 +...
exp(A(x)) = 1 + x*G(x) where G(x) is the g.f. of A158109 such that:
log(G(x)) = x + 3*1*x^2/2 + 10*4*x^3/3 + 35*53*x^4/4 + 126*2321*x^5/5 +...
PROG
(PARI) {a(n)=local(A=x+x^2); if(n==0, 1, for(i=1, n-1, A=log(1+x*exp(sum(m=1, n, binomial(2*m-1, m)*x^m*polcoeff(A+x*O(x^m), m) )+x*O(x^n)))); n*polcoeff(A, n))}
CROSSREFS
Cf. A158109, A158258 (variant), A001700.
Sequence in context: A221605 A307172 A275801 * A362050 A095210 A156469
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 28 2009
STATUS
approved