OFFSET
0,3
FORMULA
G.f.: A(x) = Product_{n>=1} G_{n}(x^n) where G_{n}(x^n) = Product_{k=0..n-1} [1 + u^k*x * A(u^k*x)] with u = exp(2*Pi*I/n).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 44*x^4 + 272*x^5 + 3053*x^6 +...
log(1+x*A(x)) = x + x^2/2 + 4*x^3/3 + 21*x^4/4 + 186*x^5/5 + 1366*x^6/6 +...
log(A(x)) = x + 3*x^2/2 + 16*x^3/3 + 147*x^4/4 + 1116*x^5/5 + 16392*x^6/6 +...
log(A(x)) = x + 3*1*x^2/2 + 4*4*x^3/3 + 7*21*x^4/4 + 6*186*x^5/5 + 12*1366*x^6/6 +...
PROG
(PARI) {a(n)=local(A=1+x); if(n==0, 1, for(i=1, n, A=exp(sum(m=1, n, sigma(m)*x^m*polcoeff(log(1+x*A+x*O(x^m)), m))+x*O(x^n))); polcoeff(A, n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 28 2009
STATUS
approved