login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158104 a(n) = [x^n] 1/eta(x)^(4^n). 7
1, 4, 152, 49920, 191701440, 9659304851456, 6631121047328399360, 63121566305846614746333184, 8450364710466604643357631528951808, 16116664948206611884835318695391740990586880 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Here eta(q) is the q-expansion of the Dedekind eta function without the q^(1/24) factor (A010815).

LINKS

Table of n, a(n) for n=0..9.

FORMULA

G.f.: A(x) = Sum_{n>=0} (-1)^n*log( eta(4^n*x) )^n/n!.

G.f.: A(x) = Sum_{n>=0} [ Sum_{k>=1} ( (4^n*x)^k/(1 - (4^n*x)^k) )/k ]^n/n!.

a(n) = [x^n] P(x)^(4^n) where P(x) = 1/eta(x) = Product_{n>0} 1/(1-x^n) = g.f. of the partition numbers (A000041).

EXAMPLE

G.f.: A(x) = 1 + 4*x + 152*x^2 + 49920*x^3 + 191701440*x^4 +...

A(x) = 1 - log(eta(4*x)) + log(eta(16*x))^2/2! - log(eta(64*x))^3/3! +-...

...

Let P(x) = 1/eta(x) denote the g.f. of the partition numbers A000041:

P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 +...

then a(n) is the coefficient of x^n in P(x)^(4^n):

P(x)^(4^0): [(1),1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,...];

P(x)^(4^1): [1,(4),14,40,105,252,574,1240,2580,5180,10108,...];

P(x)^(4^2): [1,16,(152),1088,6460,33440,155584,663936,2636326,...];

P(x)^(4^3): [1,64,2144,(49920),905840,13627264,176638592,...];

P(x)^(4^4): [1,256,33152,2894848,(191701440),10266643968,...];

P(x)^(4^5): [1,1024,525824,180531200,46620870400,(9659304851456),...];

where terms in parenthesis form the initial terms of this sequence.

MATHEMATICA

a[n_] := SeriesCoefficient[1/QPochhammer[q]^(4^n), {q, 0, n}]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Nov 24 2015 *)

PROG

(PARI) {a(n)=polcoeff(1/eta(x+x*O(x^n))^(4^n), n)}

(PARI) {a(n)=polcoeff(sum(m=0, n, (-1)^m*log(eta(4^m*x+x*O(x^n)))^m/m!), n)}

(PARI) {a(n)=polcoeff(sum(m=0, n, sum(k=1, n, (4^m*x)^k/(1-(4^m*x)^k)/k+x*O(x^n))^m/m!), n)}

CROSSREFS

Cf. A000041, A158102, A158103, A158105, A158112, A158113, A158114, A158115.

Sequence in context: A006439 A264711 A279325 * A244448 A197204 A197802

Adjacent sequences:  A158101 A158102 A158103 * A158105 A158106 A158107

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Mar 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 17:12 EST 2021. Contains 349424 sequences. (Running on oeis4.)