login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158103
a(n) = [x^n] 1/eta(x)^(3^n).
7
1, 3, 54, 4410, 2208465, 7958364696, 221555929999779, 48859965926267395185, 86255750314864791590005098, 1228682270675324224826503933533795, 142349199783036538823503393789360721783250
OFFSET
0,2
COMMENTS
Here eta(q) is the q-expansion of the Dedekind eta function without the q^(1/24) factor (A010815).
FORMULA
G.f.: A(x) = Sum_{n>=0} (-1)^n*log( eta(3^n*x) )^n/n!.
G.f.: A(x) = Sum_{n>=0} [ Sum_{k>=1} ( (3^n*x)^k/(1 - (3^n*x)^k) )/k ]^n/n!.
a(n) = [x^n] P(x)^(3^n) where P(x) = 1/eta(x) = Product_{n>0} 1/(1-x^n) = g.f. of the partition numbers (A000041).
EXAMPLE
G.f.: A(x) = 1 + 3*x + 54*x^2 + 4410*x^3 + 2208465*x^4 +...
A(x) = 1 - log(eta(3*x)) + log(eta(9*x))^2/2! - log(eta(27*x))^3/3! +-...
...
Let P(x) = 1/eta(x) denote the g.f. of the partition numbers A000041:
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 +...
then a(n) is the coefficient of x^n in P(x)^(3^n):
P(x)^(3^0): [(1),1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,...];
P(x)^(3^1): [1,(3),9,22,51,108,221,429,810,1479,2640,4599,...];
P(x)^(3^2): [1,9,(54),255,1035,3753,12483,38709,113265,...];
P(x)^(3^3): [1,27,405,(4410),38745,290466,1923075,11506185,...];
P(x)^(3^4): [1,81,3402,98523,(2208465),40795083,645824907,...];
P(x)^(3^5): [1,243,29889,2480382,156189951,(7958364696),...];
where terms in parenthesis form the initial terms of this sequence.
MATHEMATICA
a[n_] := SeriesCoefficient[1/QPochhammer[q]^(3^n), {q, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 24 2015 *)
PROG
(PARI) {a(n)=polcoeff(1/eta(x+x*O(x^n))^(3^n), n)}
(PARI) {a(n)=polcoeff(sum(m=0, n, (-1)^m*log(eta(3^m*x+x*O(x^n)))^m/m!), n)}
(PARI) {a(n)=polcoeff(sum(m=0, n, sum(k=1, n, (3^m*x)^k/(1-(3^m*x)^k)/k+x*O(x^n))^m/m!), n)}
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 12 2009
STATUS
approved