login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172389
a(n) = Sum_{k=0..n} C(n,k)*3^(k*(n-k))/2^n.
1
1, 1, 2, 7, 44, 481, 9272, 310087, 18164624, 1843946881, 326808099872, 100310221406407, 53656068398769344, 49686835289802328801, 80090696216400251499392, 223445962168511596412895367
OFFSET
0,3
FORMULA
O.g.f.: A(x) = Sum_{n>=0} 2*x^n/(2 - 3^n*x)^(n+1).
E.g.f.: E(x) = Sum_{n>=0} exp(3^n*x/2)*(x/2)^n/n!.
a(n) = A135079(n)/2^n.
EXAMPLE
O.g.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 44*x^4 + 481*x^5 + 9272*x^6 +...
A(x) = 2/(2-x) + 2*x/(2-3*x)^2 + 2*x^2/(2-3^2*x)^3 + 2*x^3/(2-3^3*x)^4 +...+ 2*x^n/(2-3^n*x)^(n+1) +...
E.g.f.: E(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 44*x^4/4! + 481*x^5/5! +...
E(x) = exp(x/2) + exp(3*x/2)*x/2 + exp(3^2*x/2)*(x/2)^2/2! + exp(3^3*x/2)*(x/2)^3/3! +...+ exp(3^n*x/2)*(x/2)^n/n! +...
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*3^(k*(n-k)))/2^n}
(PARI) {a(n)=n!*polcoeff(sum(k=0, n, exp(3^k*x/2 +x*O(x^n))*(x/2)^k/k!), n)}
(PARI) {a(n)=polcoeff(sum(k=0, n, (x/2)^k/(1-3^k*x/2 +x*O(x^n))^(k+1)), n)}
CROSSREFS
Cf. variants: A135079, A047863.
Sequence in context: A001046 A158257 A348857 * A153522 A355109 A278295
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 03 2010
STATUS
approved