The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A355109 a(n) = 1 + Sum_{k=1..n-1} binomial(n-1,k) * 2^(k-1) * a(k). 0
1, 1, 2, 7, 44, 493, 9974, 372403, 26247008, 3559692121, 942403603562, 491777568765151, 508938530329020692, 1048381120745440503877, 4307758467916752367544414, 35349370769806113877653011083, 579693879415731511179957972407624 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = (2 - x + x * A(2*x/(1 - x))) / (2 * (1 - x)).
MAPLE
a:= proc(n) option remember; 1+add(a(k)*
binomial(n-1, k)*2^(k-1), k=1..n-1)
end:
seq(a(n), n=0..16); # Alois P. Heinz, Jun 19 2022
MATHEMATICA
a[n_] := a[n] = 1 + Sum[Binomial[n - 1, k] 2^(k - 1) a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 16}]
nmax = 16; A[_] = 0; Do[A[x_] = (2 - x + x A[2 x/(1 - x)])/(2 (1 - x)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
CROSSREFS
Sequence in context: A348857 A172389 A153522 * A278295 A356613 A107354
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 19 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 08:13 EDT 2024. Contains 372666 sequences. (Running on oeis4.)