The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A352859 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n,k+1) * 2^k * a(k). 2
1, 1, 4, 25, 280, 5665, 211516, 14907673, 2021820016, 535262714881, 279317901141172, 289064917007756761, 595455410823115765768, 2446703815513439818406305, 20077597428602000393057306476, 329252263598282049972950683567705, 10794203801863458962317873561872563680 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = 1 + x * A(2*x/(1 - x)) / (1 - x)^2.
a(n) ~ c * 2^(n*(n-1)/2), where c = 8.12511731924148105991770742530352144084320407825344... - Vaclav Kotesovec, Apr 07 2022
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k + 1] 2^k a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]
nmax = 16; A[_] = 0; Do[A[x_] = 1 + x A[2 x/(1 - x)]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
CROSSREFS
Sequence in context: A320569 A058791 A216660 * A350585 A238510 A222982
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 06 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 13:47 EDT 2024. Contains 373445 sequences. (Running on oeis4.)