OFFSET
0,3
FORMULA
O.g.f.: A(x) = Sum_{n>=0} x^n/(1+2^n*x)^(n+1).
E.g.f.: E(x) = Sum_{n>=0} exp(-2^n*x)*x^n/n!.
EXAMPLE
O.g.f.: A(x) = 1 - 2*x^2 + 34*x^4 - 2942*x^6 + 1144834*x^8 +...
A(x) = 1/(1+x) + x/(1+2*x)^2 + x^2/(1+2^2*x)^3 + x^3/(1+2^3*x)^4 +...+ x^n/(1+2^n*x)^(n+1) +...
E.g.f.: E(x) = 1 - 2*x^2/2! + 34*x^4/4! - 2942*x^6/6! + 1144834*x^8/8! +...
E(x) = exp(-x) + exp(-2*x)*x + exp(-2^2*x)*x^2/2! + exp(-2^3*x)*x^3/3! +...+ exp(-2^n*x)*x^n/n! +...
PROG
(PARI) {a(n)=sum(k=0, n, (-1)^k*binomial(n, k)*2^(k*(n-k)))}
(PARI) {a(n)=polcoeff(sum(k=0, n, x^k/(1+2^k*x +x*O(x^n))^(k+1)), n)}
(PARI) {a(n)=n!*polcoeff(sum(k=0, n, exp(-2^k*x +x*O(x^n))*x^k/k!), n)}
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Feb 03 2010
STATUS
approved