OFFSET
0,1
COMMENTS
With "positive" instead "nonnegative", a(1) would be equal to 1, and other terms would not change.
a(8) <= 425616965373600. - Giovanni Resta, Oct 13 2022
EXAMPLE
2 is the smallest number that is not possible to write as (m * sum of digits of m) for some m, hence a(0) = 2.
0 = 0 * 0, hence a(1) = 0
36 = 6 * 6 = 12 * (1+2) and 36 is the smallest number with 2 such representations, hence a(2) = 36.
MATHEMATICA
f[n_] := n*Plus @@ IntegerDigits[n]; m = 2*10^5; v = Table[0, {m}]; Do[i = f[n] + 1; If[i <= m, v[[i]]++], {n, 0, m}]; s = {}; k = 0; While[(p = Position[v, k]) != {}, AppendTo[s, p[[1, 1]] - 1]; k++]; s (* Amiram Eldar, Sep 23 2020 *)
PROG
(PARI) a(n)={if(n==1, 0, for(k=1, oo, if(sumdiv(k, d, d*sumdigits(d)==k) == n, return(k))))} \\ Andrew Howroyd, Sep 23 2020
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Bernard Schott, Sep 23 2020
EXTENSIONS
a(3)-a(5) from Amiram Eldar, Sep 23 2020
a(6)-a(7) from Bert Dobbelaere, Sep 27 2020, matching upper bounds from David A. Corneth
STATUS
approved