This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A178235 a(n) = 2*(n+2)!*(zeta(-2*n)-zeta(-n)), zeta(n) the Riemann zeta function. 1
 0, 1, 0, -2, 0, 40, 0, -3024, 0, 604800, 0, -262690560, 0, 217945728000, 0, -315323879270400, 0, 742997162299392000, 0, -2703345607134653644800, 0, 14552624755991316234240000, 0, -111913707637423660385894400000, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Old name was: A polynomial expansion: p(x,t)=-Exp[t]*(-1 + Exp[x])/(-1 + Exp[t]). The expansion is the solution for integer q of: q*Exp[x*t]/(q - 1 + Exp[x]) - Exp[t*(1 + x)] = 0. (See the Mathematica program.) That result is a generalized Euler number in q as a Pascal expansion. For higher Sierpinski-Pascal levels (Eulerian and MacMahon) this results in polynomials. For n >= 9, a(n) is divisible by 2*10^(floor(n/5)-1). - G. C. Greubel, Nov 06 2015 LINKS G. C. Greubel, Table of n, a(n) for n = 0..200 MAPLE A178235 := n -> 2*(n+2)!*(Zeta(-2*n)-Zeta(-n)); seq(A178235(n), n=0..24); # Peter Luschny, Jul 14 2013 MATHEMATICA p[t_] = -Exp[t]*(-1 + Exp[x])/(-1 + Exp[t]); Table[ FullSimplify[ExpandAll[(2*(n + 2)!n!/(1 - Exp[x]))*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], {n, 0, 30}] CROSSREFS Sequence in context: A193052 A120489 A145576 * A214447 A230888 A185281 Adjacent sequences:  A178232 A178233 A178234 * A178236 A178237 A178238 KEYWORD sign AUTHOR Roger L. Bagula, May 23 2010 EXTENSIONS Edited, new name and a(0) changed to 0 by Peter Luschny, Jul 14 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 06:52 EDT 2019. Contains 327119 sequences. (Running on oeis4.)