login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178235
a(n) = 2*(n+2)!*(zeta(-2*n)-zeta(-n)), zeta(n) the Riemann zeta function.
1
0, 1, 0, -2, 0, 40, 0, -3024, 0, 604800, 0, -262690560, 0, 217945728000, 0, -315323879270400, 0, 742997162299392000, 0, -2703345607134653644800, 0, 14552624755991316234240000, 0, -111913707637423660385894400000, 0
OFFSET
0,4
COMMENTS
Old name was: A polynomial expansion: p(x,t)=-Exp[t]*(-1 + Exp[x])/(-1 + Exp[t]).
The expansion is the solution for integer q of: q*Exp[x*t]/(q - 1 + Exp[x]) - Exp[t*(1 + x)] = 0. (See the Mathematica program.) That result is a generalized Euler number in q as a Pascal expansion. For higher Sierpinski-Pascal levels (Eulerian and MacMahon) this results in polynomials.
For n >= 9, a(n) is divisible by 2*10^(floor(n/5)-1). - G. C. Greubel, Nov 06 2015
LINKS
MAPLE
A178235 := n -> 2*(n+2)!*(Zeta(-2*n)-Zeta(-n)); seq(A178235(n), n=0..24); # Peter Luschny, Jul 14 2013
MATHEMATICA
p[t_] = -Exp[t]*(-1 + Exp[x])/(-1 + Exp[t]); Table[ FullSimplify[ExpandAll[(2*(n + 2)!n!/(1 - Exp[x]))*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], {n, 0, 30}]
CROSSREFS
Sequence in context: A337817 A120489 A145576 * A214447 A357541 A230888
KEYWORD
sign
AUTHOR
Roger L. Bagula, May 23 2010
EXTENSIONS
Edited, new name and a(0) changed to 0 by Peter Luschny, Jul 14 2013
STATUS
approved