OFFSET
1,2
COMMENTS
T(n,k) is the n-th partial sum of the k-th column of the triangle of natural numbers.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275
FORMULA
From Andrew Howroyd, Apr 18 2021: (Start)
T(n,k) = Sum_{j=k..n} (k + j*(j-1)/2).
T(n,k) = binomial(n+1, 3) - binomial(k, 3) + k*(n-k+1).
T(2*n, n) = A255211(n).
(End)
EXAMPLE
First few rows of the triangle:
1;
3, 3;
7, 8, 6;
14, 16, 15, 10;
25, 28, 28, 24, 15;
41, 45, 46, 43, 35, 21;
63, 68, 70, 68, 61, 48, 28;
92, 98, 101, 100, 94, 82, 63, 36;
129, 136, 140, 140, 135, 124, 106, 80, 45;
175, 183, 188, 189, 185, 175, 158, 133, 99, 55;
231, 240, 246, 248, 245, 236, 220, 196, 163, 120, 66;
298, 308, 314, 318, 316, 308, 293, 270, 238, 196, 143, 78;
...
These are the partial sums of the columns of the triangle:
1;
2, 3;
4, 5, 6;
7, 8, 9, 10;
...
For example, T(4,2) = 3 + 5 + 8 = 16.
PROG
(PARI) T(n, k) = {binomial(n+1, 3) - binomial(k, 3) + k*(n-k+1)}
{ for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print) } \\ Andrew Howroyd, Apr 18 2021
CROSSREFS
KEYWORD
AUTHOR
Gary W. Adamson, May 23 2010
EXTENSIONS
Name changed and terms a(56) and beyond from Andrew Howroyd, Apr 18 2021
STATUS
approved