login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200792
Number of partitions of n such that the number of parts and the greatest part are not coprime.
2
0, 0, 1, 1, 3, 3, 7, 8, 12, 14, 24, 29, 43, 53, 72, 87, 119, 145, 196, 241, 314, 386, 505, 617, 786, 960, 1202, 1456, 1813, 2186, 2698, 3253, 3975, 4778, 5827, 6979, 8463, 10127, 12217, 14566, 17509, 20810, 24895, 29513, 35128, 41496, 49220, 57949, 68445
OFFSET
1,5
LINKS
EXAMPLE
a(5) = 3: [1,1,1,2], [1,1,3], [1,4].
a(6) = 3: [1,1,2,2], [1,2,3], [2,4].
a(7) = 7: [1,1,1,1,1,2], [1,2,2,2], [2,2,3], [1,3,3], [1,1,1,4], [3,4], [1,6].
MAPLE
b:= proc(n, j, t) option remember;
add(b(n-i, i, t+1), i=j..iquo(n, 2))+
`if`(igcd(t, n)>1, 1, 0)
end:
a:= n-> b(n, 1, 1):
seq(a(n), n=1..60);
MATHEMATICA
b[n_, j_, t_] := b[n, j, t] = Sum[b[n-i, i, t+1], {i, j, Quotient[n, 2]}] + If[GCD[t, n] > 1, 1, 0]; a[n_] := b[n, 1, 1]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Feb 06 2017, translated from Maple *)
CROSSREFS
Cf. A199887.
Sequence in context: A021886 A178238 A255333 * A218567 A161416 A241637
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 22 2011
STATUS
approved