login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n such that the number of parts and the greatest part are not coprime.
2

%I #13 Feb 06 2017 08:45:49

%S 0,0,1,1,3,3,7,8,12,14,24,29,43,53,72,87,119,145,196,241,314,386,505,

%T 617,786,960,1202,1456,1813,2186,2698,3253,3975,4778,5827,6979,8463,

%U 10127,12217,14566,17509,20810,24895,29513,35128,41496,49220,57949,68445

%N Number of partitions of n such that the number of parts and the greatest part are not coprime.

%H Alois P. Heinz, <a href="/A200792/b200792.txt">Table of n, a(n) for n = 1..500</a>

%e a(5) = 3: [1,1,1,2], [1,1,3], [1,4].

%e a(6) = 3: [1,1,2,2], [1,2,3], [2,4].

%e a(7) = 7: [1,1,1,1,1,2], [1,2,2,2], [2,2,3], [1,3,3], [1,1,1,4], [3,4], [1,6].

%p b:= proc(n, j, t) option remember;

%p add(b(n-i, i, t+1), i=j..iquo(n, 2))+

%p `if`(igcd(t, n)>1, 1, 0)

%p end:

%p a:= n-> b(n, 1, 1):

%p seq(a(n), n=1..60);

%t b[n_, j_, t_] := b[n, j, t] = Sum[b[n-i, i, t+1], {i, j, Quotient[n, 2]}] + If[GCD[t, n] > 1, 1, 0]; a[n_] := b[n, 1, 1]; Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Feb 06 2017, translated from Maple *)

%Y Cf. A199887.

%K nonn

%O 1,5

%A _Alois P. Heinz_, Nov 22 2011