login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214447
(-2)^n * Euler_polynomial(n,1) * binomial(2*n,n).
3
1, -2, 0, 40, 0, -4032, 0, 933504, 0, -385848320, 0, 249576198144, 0, -232643283353600, 0, 295306112919306240, 0, -489743069731226910720, 0, 1028154317960939805081600, 0, -2665182817368374114506506240, 0, 8360422228704533182913131315200
OFFSET
0,2
COMMENTS
Central column of the Euler tangent triangle, a(n) = A081733(2*n,n).
Also a(n) = -A162660(2*n,n) for n > 0. - Peter Luschny, Jul 23 2012
FORMULA
a(n) = [x^n](skp(2*n,x+1)-skp(2*n,x-1))/2) where skp(n,x) are the Swiss-Knife polynomials A153641.
a(n) = (n+1)*2^n*(2*n-1)!!*sum_{k=1..n}sum_{j=0..k}(-1)^(k-j)*(k-j)^n/(j!*(n-j+1)!) for n > 0. - Peter Luschny, Jul 23 2012
MAPLE
A214447 := n -> binomial(2*n, n)*(-2)^n*euler(n, 1):
seq(A214447(n), n=0..23);
PROG
(Sage)
from mpmath import mp, fac2
mp.dps = 32
def A214447(n) : return (n+1)*2^n*fac2(2*n-1)*add(add((-1)^(k-j)*(k-j)^n / (factorial(j)*factorial(n-j+1)) for j in (0..k)) for k in (1..n))
print([int(A214447(n)) for n in (0..19)]) # Peter Luschny, Jul 23 2012
CROSSREFS
KEYWORD
sign
AUTHOR
Peter Luschny, Jul 18 2012
STATUS
approved