Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Mar 19 2020 16:37:01
%S 1,-2,0,40,0,-4032,0,933504,0,-385848320,0,249576198144,0,
%T -232643283353600,0,295306112919306240,0,-489743069731226910720,0,
%U 1028154317960939805081600,0,-2665182817368374114506506240,0,8360422228704533182913131315200
%N (-2)^n * Euler_polynomial(n,1) * binomial(2*n,n).
%C Central column of the Euler tangent triangle, a(n) = A081733(2*n,n).
%C Also a(n) = -A162660(2*n,n) for n > 0. - _Peter Luschny_, Jul 23 2012
%F a(n) = [x^n](skp(2*n,x+1)-skp(2*n,x-1))/2) where skp(n,x) are the Swiss-Knife polynomials A153641.
%F a(n) = (n+1)*2^n*(2*n-1)!!*sum_{k=1..n}sum_{j=0..k}(-1)^(k-j)*(k-j)^n/(j!*(n-j+1)!) for n > 0. - _Peter Luschny_, Jul 23 2012
%p A214447 := n -> binomial(2*n,n)*(-2)^n*euler(n,1):
%p seq(A214447(n), n=0..23);
%o (Sage)
%o from mpmath import mp, fac2
%o mp.dps = 32
%o def A214447(n) : return (n+1)*2^n*fac2(2*n-1)*add(add((-1)^(k-j)*(k-j)^n / (factorial(j)*factorial(n-j+1)) for j in (0..k)) for k in (1..n))
%o print([int(A214447(n)) for n in (0..19)]) # _Peter Luschny_, Jul 23 2012
%Y A081733, A214445.
%K sign
%O 0,2
%A _Peter Luschny_, Jul 18 2012