login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157461
Expansion of x*(x+1) / (x^2-26*x+1).
4
1, 27, 701, 18199, 472473, 12266099, 318446101, 8267332527, 214632199601, 5572169857099, 144661784084973, 3755634216352199, 97501827841072201, 2531291889651525027, 65716087303098578501, 1706086977990911515999, 44292545340460600837473
OFFSET
1,2
COMMENTS
This sequence is part of a solution of a more general problem involving two equations, three sequences a(n), b(n), c(n) and a constant A:
A * c(n)+1 = a(n)^2,
(A+1) * c(n)+1 = b(n)^2, for details see comment in A157014.
A157461 is the b(n) sequence for A=6.
Numbers k such that 42*k^2 + 7 is a square. - Klaus Purath, Jun 12 2021
FORMULA
G.f.: x*(x+1) / (x^2-26*x+1).
a(1) = 1, a(2) = 27, a(n) = 26*a(n-1)-a(n-2) for n>2.
a(n) = (13+2*sqrt(42))^(-n)*(-6-sqrt(42)+(-6+sqrt(42))*(13+2*sqrt(42))^(2*n))/12. - Colin Barker, Jul 25 2016
a(n+1) = (a(n)^2 - 28)/a(n-1), n > 1. - Klaus Purath, Jun 12 2021
PROG
(PARI) Vec(x*(x+1)/(x^2-26*x+1)+O(x^20)) \\ Charles R Greathouse IV, Sep 26 2012
(PARI) a(n) = round((13+2*sqrt(42))^(-n)*(-6-sqrt(42)+(-6+sqrt(42))*(13+2*sqrt(42))^(2*n))/12) \\ Colin Barker, Jul 25 2016
CROSSREFS
6*A157874(n)+1 = A153111(n)^2.
7*A157874(n)+1 = A157461(n)^2.
Sequence in context: A113364 A095898 A014914 * A342037 A162827 A163179
KEYWORD
nonn,easy
AUTHOR
Paul Weisenhorn, Mar 01 2009
EXTENSIONS
Edited by Alois P. Heinz, Sep 09 2011
STATUS
approved