login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A095898 The (1,1)-term of the 3 X 3 matrix M^n, where M = [1,2,3 / 4,7,11 / 6,10,16]. 1
1, 27, 649, 15603, 375121, 9018507, 216819289, 5212681443, 125321173921, 3012920855547, 72435421707049, 1741463041824723, 41867548425500401, 1006562625253834347, 24199370554517524729, 581791455933674427843, 13987194312962703792961, 336274454967038565458907 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Colin Barker, Table of n, a(n) for n = 1..700

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (24,1).

FORMULA

a(n) = 24*a(n-1) + a(n-2) for n>=3; a(1)=1, a(2)=27 (follows from the minimal polynomial of the matrix M).

G.f.: (x+3*x^2) / (1-24*x-x^2). - Philippe Deléham, Nov 21 2008

a(n) = (-12 - sqrt(145))^(-n)*(87+7*sqrt(145) + (-289-24*sqrt(145))^n*(87-7*sqrt(145))) / 58. - Colin Barker, Mar 02 2017

EXAMPLE

a(4)=15603 because M^4 = [15603,26590,42193 / 56642,96527,153169 / 82078,139874,221952]. Alternatively, a(4) = 24*649+27 = 15603.

MAPLE

a[1]:=1: a[2]:=27: for n from 3 to 18 do a[n]:=24*a[n-1]+a[n-2] od: seq(a[n], n=1..18);

PROG

(PARI) Vec(x*(1 + 3*x) / (1 - 24*x - x^2) + O(x^30)) \\ Colin Barker, Mar 02 2017

CROSSREFS

Cf. A083412, A035513, A003622, A001950, A000201.

Sequence in context: A060603 A116988 A113364 * A014914 A157461 A162827

Adjacent sequences:  A095895 A095896 A095897 * A095899 A095900 A095901

KEYWORD

nonn,easy

AUTHOR

Gary W. Adamson, Jun 12 2004

EXTENSIONS

Corrected by T. D. Noe, Nov 07 2006

Edited by N. J. A. Sloane, Dec 16 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 24 20:14 EDT 2017. Contains 288707 sequences.