login
A163179
Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
0
1, 27, 702, 18252, 474201, 12320100, 320085675, 8316067500, 216057716550, 5613342710625, 145838884522500, 3789004401804375, 98441196968058750, 2557576669978687500, 66447774146243953125, 1726363373899181062500
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170746, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(325*t^4 - 25*t^3 - 25*t^2 - 25*t + 1).
PROG
(PARI) Vec((t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(325*t^4 - 25*t^3 - 25*t^2 - 25*t + 1) + O(t^20)) \\ Jinyuan Wang, Mar 23 2020
CROSSREFS
Sequence in context: A157461 A342037 A162827 * A163527 A164017 A164644
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved