login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163180
a(n) = tau(n) + Sum_{k=1..n} (n mod k).
2
1, 2, 3, 4, 6, 7, 10, 12, 15, 17, 24, 23, 30, 35, 40, 41, 53, 53, 66, 67, 74, 81, 100, 93, 106, 116, 129, 130, 153, 146, 169, 173, 188, 201, 222, 207, 235, 252, 273, 266, 299, 292, 327, 334, 345, 362, 405, 384, 417, 426, 453, 460, 507, 500, 533, 528, 557, 582, 637, 598, 647
OFFSET
1,2
COMMENTS
Number of divisors of n plus the sum of all the remainders modulo the numbers below n.
FORMULA
a(n) = A000005(n) + A004125(n).
EXAMPLE
a(1) = 1 + 0 = 1;
a(2) = 2 + 0 = 2;
a(3) = 2 + 1 = 3;
a(4) = 3 + 1 = 4;
a(5) = 2 + 4 = 6.
MAPLE
A004125 := proc(n) add( modp(n, k), k=2..n) ; end: A163180 := proc(n) numtheory[tau](n)+A004125(n) ; end: seq(A163180(n), n=1..80) ; # R. J. Mathar, Jul 27 2009
MATHEMATICA
Table[DivisorSigma[0, n]+Sum[Mod[n, k], {k, n}], {n, 70}] (* Harvey P. Dale, Feb 11 2015 *)
PROG
(Python)
from math import isqrt
from sympy import divisor_count
def A163180(n): return divisor_count(n)+n**2+((s:=isqrt(n))**2*(s+1)-sum((q:=n//k)*((k<<1)+q+1) for k in range(1, s+1))>>1) # Chai Wah Wu, Oct 22 2023
CROSSREFS
Sequence in context: A099523 A049806 A158381 * A341270 A091515 A036405
KEYWORD
nonn
AUTHOR
EXTENSIONS
169 inserted by R. J. Mathar, Jul 27 2009
STATUS
approved