Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jun 27 2021 03:29:02
%S 1,27,701,18199,472473,12266099,318446101,8267332527,214632199601,
%T 5572169857099,144661784084973,3755634216352199,97501827841072201,
%U 2531291889651525027,65716087303098578501,1706086977990911515999,44292545340460600837473
%N Expansion of x*(x+1) / (x^2-26*x+1).
%C This sequence is part of a solution of a more general problem involving two equations, three sequences a(n), b(n), c(n) and a constant A:
%C A * c(n)+1 = a(n)^2,
%C (A+1) * c(n)+1 = b(n)^2, for details see comment in A157014.
%C A157461 is the b(n) sequence for A=6.
%C Numbers k such that 42*k^2 + 7 is a square. - _Klaus Purath_, Jun 12 2021
%H Colin Barker, <a href="/A157461/b157461.txt">Table of n, a(n) for n = 1..700</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (26,-1).
%F G.f.: x*(x+1) / (x^2-26*x+1).
%F a(1) = 1, a(2) = 27, a(n) = 26*a(n-1)-a(n-2) for n>2.
%F a(n) = (13+2*sqrt(42))^(-n)*(-6-sqrt(42)+(-6+sqrt(42))*(13+2*sqrt(42))^(2*n))/12. - _Colin Barker_, Jul 25 2016
%F a(n+1) = (a(n)^2 - 28)/a(n-1), n > 1. - _Klaus Purath_, Jun 12 2021
%o (PARI) Vec(x*(x+1)/(x^2-26*x+1)+O(x^20)) \\ _Charles R Greathouse IV_, Sep 26 2012
%o (PARI) a(n) = round((13+2*sqrt(42))^(-n)*(-6-sqrt(42)+(-6+sqrt(42))*(13+2*sqrt(42))^(2*n))/12) \\ _Colin Barker_, Jul 25 2016
%Y 6*A157874(n)+1 = A153111(n)^2.
%Y 7*A157874(n)+1 = A157461(n)^2.
%K nonn,easy
%O 1,2
%A _Paul Weisenhorn_, Mar 01 2009
%E Edited by _Alois P. Heinz_, Sep 09 2011