OFFSET
1,2
COMMENTS
LINKS
Colin Barker, Table of n, a(n) for n = 1..350
Index entries for linear recurrences with constant coefficients, signature (483,-483,1).
FORMULA
G.f.: 88*x^2 / (1-483*x+483*x^2-x^3).
c(1) = 0, c(2) = 88, c(3) = 483*c(2), c(n) = 483*(c(n-1)-c(n-2))+c(n-3) for n>3.
a(n) = -((241+44*sqrt(30))^(-n)*(-1+(241+44*sqrt(30))^n)*(11+2*sqrt(30)+(-11+2*sqrt(30))*(241+44*sqrt(30))^n))/120. - Colin Barker, Jul 25 2016
MATHEMATICA
CoefficientList[Series[88x^2/(1-483x+483x^2-x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{483, -483, 1}, {0, 0, 88}, 30] (* Harvey P. Dale, Apr 16 2015 *)
PROG
(PARI) concat(0, Vec(88*x^2/(1-483*x+483*x^2-x^3)+O(x^20))) \\ Charles R Greathouse IV, Sep 26 2012
(PARI) a(n) = round(-((241+44*sqrt(30))^(-n)*(-1+(241+44*sqrt(30))^n)*(11+2*sqrt(30)+(-11+2*sqrt(30))*(241+44*sqrt(30))^n))/120) \\ Colin Barker, Jul 25 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Weisenhorn, Mar 01 2009
EXTENSIONS
Edited by Alois P. Heinz, Sep 09 2011
STATUS
approved