login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174499
Smallest number whose square starts and ends with (at least) n identical digits.
1
1, 88, 10538, 235700, 10541000, 57735000, 7453560000, 14907120000, 18257418600000, 29814239700000, 298142397000000, 1490711985000000, 14907119850000000, 105409255338950000000, 7453559924999300000000, 10540925533894600000000
OFFSET
1,2
COMMENTS
For n > 3 the last n identical digits are zeros. Proof:
For n = 3, the numbers a(n) == {0, 38, 100, 200, 300, 400, 462, 500, 538, 600, 700, 800, 900, 962} mod 1000, but for n = 4, if the suffix is different from zero, a(n) == {38, 462, 538, 962} mod 1000, and for d from [1..9], (d038)^2 <> 4444 (mod 10000), (d462)^2 <> 4444 (mod 10000), (d538)^2 <> 4444 (mod 10000), (d962)^2 <> 4444 (mod 10000).
Differs from A346926 where exactly n identical digits are required. - Bernard Schott, Aug 08 2021
FORMULA
For n > 3, a(n) = A119998(n)*10^q, q = floor(n+1)/2. [corrected by Bernard Schott, Aug 08 2021]
EXAMPLE
a(3) = 10538 because 10538^2 = 111049444 starts and ends in 3 identical digits.
a(5) = 10541000 because 10541000^2 = 111112681000000 starts with 5 identical digits and ends with 6 identical digits.
MAPLE
with(numtheory):T:=array(1..100):p0:=10:for k from 2 to 10 do: id:= 0:for p
from p0 to 100000000 while(id=0) do:n:=p^2:l:=length(n):n0:=n:for m from 1 to
l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v :T[m]:=u:od:z:=0:for a from 1
to k-1 do: if T[l]=T[l-a] and T[1]=T[1+a] then z:=z+1:else fi:od:if z=k-1 then
print(p):id:=1:p0:=p:else fi:od:od:
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Feb 22 2011
EXTENSIONS
Name clarified and a(10) and a(12) corrected by Bernard Schott, Aug 08 2021
STATUS
approved