The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174501 Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A003499(n)) ), where A003499(n) = (3+sqrt(8))^n + (3-sqrt(8))^n. 5
 1, 4, 1, 32, 1, 196, 1, 1152, 1, 6724, 1, 39200, 1, 228484, 1, 1331712, 1, 7761796, 1, 45239072, 1, 263672644, 1, 1536796800, 1, 8957108164, 1, 52205852192, 1, 304278004996, 1, 1773462177792, 1, 10336495061764, 1, 60245508192800, 1, 351136554095044, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (0,7,0,-7,0,1). FORMULA a(2n-1) = 1, a(2n) = A003499(n) - 2, for n>=1 [conjecture]. The above conjectures are correct. See the Bala link for details. - Peter Bala, Jan 08 2013 a(n) = 7*a(n-2)-7*a(n-4)+a(n-6). G.f.: -x*(x^4+4*x^3-6*x^2+4*x+1) / ((x-1)*(x+1)*(x^2-2*x-1)*(x^2+2*x-1)). - Colin Barker, Jan 20 2013 a(n) = (((-1-sqrt(2))^n+(1-sqrt(2))^n+(sqrt(2)-1)^n+(1+sqrt(2))^n-4))/2 for n even. - Colin Barker, May 11 2016 EXAMPLE Let L = Sum_{n>=1} 1/(n*A003499(n)) or, more explicitly, L = 1/6 + 1/(2*34) + 1/(3*198) + 1/(4*1154) + 1/(5*6726) +... so that L = 0.1833074113563494600094468694966574405706183998044... then exp(L) = 1.2011836088120841844713993433258934531421726294252... equals the continued fraction given by this sequence: exp(L) = [1;4,1,32,1,196,1,1152,1,6724,1,39200,1,...]; i.e., exp(L) = 1 + 1/(4 + 1/(1 + 1/(32 + 1/(1 + 1/(196 + 1/(1 +...)))))). Compare these partial quotients to A003499(n), n=1,2,3,...: [6,34,198,1154,6726,39202,228486,1331714,7761798,45239074,...]. MATHEMATICA LinearRecurrence[{0, 7, 0, -7, 0, 1}, {1, 4, 1, 32, 1, 196}, 50] (* Harvey P. Dale, Jul 14 2021 *) PROG (PARI) {a(n)=local(L=sum(m=1, 2*n+1000, 1./(m*round((3+sqrt(8))^m+(3-sqrt(8))^m)))); contfrac(exp(L))[n]} (PARI) Vec(-x*(x^4+4*x^3-6*x^2+4*x+1)/((x-1)*(x+1)*(x^2-2*x-1)*(x^2+2*x-1)) + O(x^50)) \\ Colin Barker, May 11 2016 CROSSREFS Cf. A003499, A174500, A174502. Sequence in context: A190647 A123126 A303277 * A051142 A266240 A322601 Adjacent sequences:  A174498 A174499 A174500 * A174502 A174503 A174504 KEYWORD cofr,nonn,easy AUTHOR Paul D. Hanna, Mar 20 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 18:26 EDT 2021. Contains 347473 sequences. (Running on oeis4.)