login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303277
If n = Product (p_j^k_j) then a(n) = (Sum (k_j))^(Sum (p_j)).
4
1, 1, 1, 4, 1, 32, 1, 9, 8, 128, 1, 243, 1, 512, 256, 16, 1, 243, 1, 2187, 1024, 8192, 1, 1024, 32, 32768, 27, 19683, 1, 59049, 1, 25, 16384, 524288, 4096, 1024, 1, 2097152, 65536, 16384, 1, 531441, 1, 1594323, 6561, 33554432, 1, 3125, 128, 2187, 1048576, 14348907, 1, 1024, 65536
OFFSET
1,4
LINKS
FORMULA
a(n) = bigomega(n)^sopf(n) = A001222(n)^A008472(n).
a(p^k) = k^p where p is a prime.
a(A000312(k)) = a(k)*k^A008472(k).
a(A000142(k)) = A022559(k)^A034387(k).
a(A002110(k)) = k^A007504(k).
EXAMPLE
a(48) = a(2^4 * 3^1) = (4 + 1)^(2 + 3) = 5^5 = 3125.
MATHEMATICA
Join[{1}, Table[PrimeOmega[n]^DivisorSum[n, # &, PrimeQ[#] &], {n, 2, 55}]]
PROG
(PARI) a(n) = my(f=factor(n)); vecsum(f[, 2])^vecsum(f[, 1]); \\ Michel Marcus, Apr 21 2018
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 20 2018
STATUS
approved