login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088865
(Sum of distinct prime factors)^(sum of prime exponents).
5
1, 2, 3, 4, 5, 25, 7, 8, 9, 49, 11, 125, 13, 81, 64, 16, 17, 125, 19, 343, 100, 169, 23, 625, 25, 225, 27, 729, 29, 1000, 31, 32, 196, 361, 144, 625, 37, 441, 256, 2401, 41, 1728, 43, 2197, 512, 625, 47, 3125, 49, 343, 400, 3375, 53, 625, 256, 6561, 484, 961
OFFSET
1,2
COMMENTS
a(n) = n iff n is 1 or a prime power; otherwise, a(n) > n. - Ivan Neretin, May 31 2016
LINKS
FORMULA
a(n) = A008472(n)^A001222(n).
EXAMPLE
a(75) = a(3^1 * 5^2) = (3+5)^(1+2) = 8^3 = 512.
MATHEMATICA
pf2pe[n_]:=Module[{tfi=Transpose[FactorInteger[n]]}, Total[ First[tfi]]^ Total[ Last[tfi]]]; Array[pf2pe, 60] (* Harvey P. Dale, Sep 21 2011 *)
Array[Power @@ Map[Total, Transpose@ FactorInteger@ #] &, 58] (* Michael De Vlieger, Apr 25 2017 *)
CROSSREFS
Sequence in context: A248713 A242799 A281588 * A237342 A075807 A124232
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Nov 26 2003
STATUS
approved