The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A088864 Maximum of the products of left and right parts when splitting the binary representation of n. 1
 0, 0, 1, 0, 2, 2, 3, 0, 4, 4, 6, 4, 6, 6, 9, 0, 8, 8, 12, 8, 10, 12, 15, 8, 12, 12, 18, 12, 15, 18, 21, 0, 16, 16, 24, 16, 20, 24, 28, 16, 20, 20, 30, 24, 26, 30, 35, 16, 24, 24, 36, 24, 30, 36, 42, 24, 28, 30, 42, 36, 39, 42, 49, 0, 32, 32, 48, 32, 40, 48, 56, 32, 36, 40, 54 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS a(2^n) = 0, a(2^n + 1) = 2^(n-1). a(2*n+1) > a(2*n) = 2*a(n). - Reinhard Zumkeller, Jun 27 2013 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 FORMULA a(n) = Max{floor(n/(2^k))*(n mod 2^k)}. EXAMPLE n=77 -> '1001101': a(77) = Max{'1'*'001101', '10'*'01101', '100'*'1101', '1001'*'101', '10011'*'01', '100110'*'1'} = Max{1*13, 2*13, 4*13, 9*5, 19*1, 38*1} = Max{13, 26, 52, 45, 19, 38} = 52. MATHEMATICA mplrp[n_]:=Module[{idn2=IntegerDigits[n, 2], len}, len=Length[idn2]; Max[ Times @@@Table[{FromDigits[Take[idn2, i], 2], FromDigits[Take[ idn2, -(len-i)], 2]}, {i, len}]]]; Array[mplrp, 80] (* Harvey P. Dale, Jun 24 2013 *) PROG (Haskell) import Data.List (inits, tails) import Data.Function (on) a088864 1 = 0 a088864 n = maximum \$ zipWith ((*) `on` foldr (\d v -> v * 2 + d) 0)             (init \$ tail \$ inits bs) (init \$ tail \$ tails bs)             where bs = a030308_row n -- Reinhard Zumkeller, Jun 27 2013 CROSSREFS Cf. A007088. Cf. A030308. Sequence in context: A104594 A079626 A257697 * A330925 A191361 A199784 Adjacent sequences:  A088861 A088862 A088863 * A088865 A088866 A088867 KEYWORD nonn,base AUTHOR Reinhard Zumkeller, Nov 26 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 12:55 EDT 2021. Contains 343971 sequences. (Running on oeis4.)