login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124232
Numbers n such that prime(n) and pi(n) are palindromic.
0
1, 2, 3, 4, 5, 26, 32, 36, 138, 3691, 6987, 7193, 86969, 117766, 127150, 142583, 515786, 531448, 539596, 615980, 646060, 17262354, 39816443, 47548105, 48803361, 49426747, 528977302, 538348374, 1475057753, 1559827952, 2994135736, 60040412496, 64516992534, 333771325433, 11655934712628, 21872729899659, 22903935103276, 28311805106395, 29606335619415
OFFSET
1,2
MATHEMATICA
NextPalindrome[n_] := Block[{lg = Floor@ Log[10, n] + 1, idn = IntegerDigits@n}, If[Union@ idn == {9}, Return[n + 2], If[lg < 2, Return[n + 1], If[ FromDigits@ Reverse@ Take[idn, Ceiling[lg/2]] > FromDigits@ Take[idn, -Ceiling[lg/2]], FromDigits@ Join[ Take[idn, Ceiling[lg/2]], Reverse@ Take[idn, Floor[lg/2]]], idfhn = FromDigits@ Take[idn, Ceiling[lg/2]] + 1; idp = FromDigits@ Join[IntegerDigits@ idfhn, Drop[ Reverse@ IntegerDigits@ idfhn, Mod[lg, 2]]] ]]]];
palQ[n_Integer] := Module[{idn = IntegerDigits@n}, idn == Reverse@ idn]; lst = {}; k = 1; While[k < 10^12, If[ PrimeQ@k && palQ@PrimePi@PrimePi@k, Print@PrimePi@k; AppendTo[lst, PrimePi@k]]; k = NextPalindrome@k]; lst (* Robert G. Wilson v *)
CROSSREFS
Subsequence of A075807 = numbers n such that n-th prime is palindromic.
Sequence in context: A088865 A237342 A075807 * A051143 A084853 A115337
KEYWORD
base,nonn
AUTHOR
Tanya Khovanova, Dec 13 2006
EXTENSIONS
a(22) - a(31) from Robert G. Wilson v, Dec 14 2006
a(32)-a(33) from Donovan Johnson, Jul 19 2012
a(34) from Chai Wah Wu, Sep 12 2019
a(35)-a(39) from Chai Wah Wu, Sep 19 2019
STATUS
approved