login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146898
Lower polynomial approximation of Eulerian numbers: t0(n,m)=If[Mod[2*Binomial[n, m], 2] - Mod[Binomial[n, m], 2] == 0, Binomial[n, m]/2, Binomial[n, m] + 1]; p(x,n)=If[n == 0, 1, (x + 1)^n + Sum[t0(n,m)*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]].
0
1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 8, 12, 8, 1, 1, 17, 20, 20, 17, 1, 1, 12, 47, 40, 47, 12, 1, 1, 23, 65, 107, 107, 65, 23, 1, 1, 16, 56, 112, 140, 112, 56, 16, 1, 1, 29, 72, 168, 252, 252, 168, 72, 29, 1, 1, 20, 137, 240, 420, 504, 420, 240, 137, 20, 1
OFFSET
0,5
COMMENTS
Row sums are:{1, 2, 6, 24, 30, 76, 160, 392, 510, 1044, 2140}. The effort here was to match the modulo two behavior to the Sierpinski gasket while adding a term polynomial.
FORMULA
t0(n,m)=If[Mod[2*Binomial[n, m], 2] - Mod[Binomial[n, m], 2] == 0, Binomial[n, m]/2, Binomial[n, m] + 1]; p(x,n)=If[n == 0, 1, (x + 1)^n + Sum[t0(n,m)*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]]; t(n,m)=coefficients(p(x,n)).
EXAMPLE
{1}, {1, 1}, {1, 4, 1}, {1, 11, 11, 1}, {1, 8, 12, 8, 1}, {1, 17, 20, 20, 17, 1}, {1, 12, 47, 40, 47, 12, 1}, {1, 23, 65, 107, 107, 65, 23, 1}, {1, 16, 56, 112, 140, 112, 56, 16, 1}, {1, 29, 72, 168, 252, 252, 168, 72, 29, 1}, {1, 20, 137, 240, 420, 504, 420, 240, 137, 20, 1}
MATHEMATICA
Clear[t, p, x, n]; t[n_, m_] = If[Mod[2*Binomial[n, m], 2] - Mod[Binomial[n, m], 2] == 0, Binomial[n, m]/2, Binomial[n, m] + 1]; p[x_, n_] = If[n == 0, 1, (x + 1)^n + Sum[t[n, m]*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]]; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; Flatten[%]
CROSSREFS
Sequence in context: A112500 A152938 A154096 * A152970 A154986 A154983
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Nov 02 2008
STATUS
approved