The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A146899 An additive term polynomial as a stand-alone polynomial: t(n,m) = binomial(n, m)/2 if binomial(n, m) is even, binomial(n, m) + 1 otherwise; p(x,n) = (Sum_{m=1..n-1} t(n, m)*x^m*(1 + x^(n - 2*m)))/(2*x). 0
 1, 4, 4, 2, 3, 2, 6, 5, 5, 6, 3, 16, 10, 16, 3, 8, 22, 36, 36, 22, 8, 4, 14, 28, 35, 28, 14, 4, 10, 18, 42, 63, 63, 42, 18, 10, 5, 46, 60, 105, 126, 105, 60, 46, 5, 12, 56, 166, 165, 231, 231, 165, 166, 56, 12, 6, 33, 110, 496, 396, 462, 396, 496, 110, 33, 6 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS Row sums begin 1, 8, 7, 22, 48, 132, 127, 266, 558, .... LINKS FORMULA t(n,m) = binomial(n, m)/2 if binomial(n, m) is even, binomial(n, m) + 1 otherwise; p(x,n) = (Sum_{m=1..n-1} t(n, m)*x^m*(1 + x^(n - 2*m)))/(2*x); t(n,m) = coefficients(p(x,n)). EXAMPLE Table begins    1;    4,  4;    2,  3,  2;    6,  5,  5,   6;    3, 16, 10,  16,   3;    8, 22, 36,  36,  22,   8;    4, 14, 28,  35,  28,  14,  4;   10, 18, 42,  63,  63,  42, 18, 10;    5, 46, 60, 105, 126, 105, 60, 46, 5; MATHEMATICA Clear[t, p, x, n]; t[n_, m_] = If[Mod[2*Binomial[n, m], 2] - Mod[Binomial[n, m], 2] == 0, Binomial[n, m]/2, Binomial[n, m] + 1]; p[x_, n_] = Sum[t[n, m]*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]/(2*x); Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; Flatten[%] PROG (PARI) t(n, m) = my(x=binomial(n, m)); if (x%2, x+1, x/2); p(n) = sum(m=1, n-1, t(n, m)*x^m*(1 + x^(n - 2*m)))/(2*x); row(n) = Vec(p(n)); \\ Michel Marcus, Jan 27 2021 CROSSREFS Cf. A007318 (binomial). Sequence in context: A161778 A099655 A276149 * A317726 A031351 A068923 Adjacent sequences:  A146896 A146897 A146898 * A146900 A146901 A146902 KEYWORD nonn,tabl AUTHOR Roger L. Bagula, Nov 02 2008 EXTENSIONS More terms from Michel Marcus, Jan 27 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 07:28 EST 2021. Contains 349365 sequences. (Running on oeis4.)