The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A146900 Symmetrical polynomial: t0(n,m)=If[Mod[2*Binomial[n, m], 2] - Mod[Binomial[n, m], 2] == 0, Binomial[n, m]/2, Binomial[n, m] + 1]; p(x,n)=If[n == 0, 1, (x + 1)^n + Sum[t0(n,m)*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]/2]. 0
 1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 6, 9, 6, 1, 1, 11, 15, 15, 11, 1, 1, 9, 31, 30, 31, 9, 1, 1, 15, 43, 71, 71, 43, 15, 1, 1, 12, 42, 84, 105, 84, 42, 12, 1, 1, 19, 54, 126, 189, 189, 126, 54, 19, 1, 1, 15, 91, 180, 315, 378, 315, 180, 91, 15, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are:{1, 2, 5, 16, 23, 54, 112, 260, 383, 778, 1582}. LINKS FORMULA t0(n,m)=If[Mod[2*Binomial[n, m], 2] - Mod[Binomial[n, m], 2] == 0, Binomial[n, m]/2, Binomial[n, m] + 1]; p(x,n)=If[n == 0, 1, (x + 1)^n + Sum[t0(n,m)*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]/2]; t(n,m)=coefficients(p(x,n)). EXAMPLE {1}, {1, 1}, {1, 3, 1}, {1, 7, 7, 1}, {1, 6, 9, 6, 1}, {1, 11, 15, 15, 11, 1}, {1, 9, 31, 30, 31, 9, 1}, {1, 15, 43, 71, 71, 43, 15, 1}, {1, 12, 42, 84, 105, 84, 42, 12, 1}, {1, 19, 54, 126, 189, 189, 126, 54, 19, 1}, {1, 15, 91, 180, 315, 378, 315, 180, 91, 15, 1} MATHEMATICA Clear[t, p, x, n] t[n_, m_] = If[Mod[2*Binomial[n, m], 2] - Mod[Binomial[n, m], 2] == 0, Binomial[n, m]/2, Binomial[n, m] + 1]; p[x_, n_] = If[n == 0, 1, (x + 1)^n + Sum[t[n, m]*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]/(2)]; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; Flatten[%] CROSSREFS Sequence in context: A263862 A263861 A133800 * A132733 A347971 A082039 Adjacent sequences:  A146897 A146898 A146899 * A146901 A146902 A146903 KEYWORD nonn AUTHOR Roger L. Bagula, Nov 02 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 06:07 EST 2021. Contains 349627 sequences. (Running on oeis4.)