login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132733
Triangle T(n, k) = 4*binomial(n, k) - 5 with T(n, 0) = T(n, n) = 1, read by rows.
2
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 11, 19, 11, 1, 1, 15, 35, 35, 15, 1, 1, 19, 55, 75, 55, 19, 1, 1, 23, 79, 135, 135, 79, 23, 1, 1, 27, 107, 219, 275, 219, 107, 27, 1, 1, 31, 139, 331, 499, 499, 331, 139, 31, 1, 1, 35, 175, 475, 835, 1003, 835, 475, 175, 35, 1
OFFSET
0,5
FORMULA
T(n, k) = 2*A132731 - A000012, an infinite lower triangular matrix.
From G. C. Greubel, Feb 14 2021: (Start)
T(n, k) = 4*binomial(n, k) - 5 with T(n, 0) = T(n, n) = 1.
Sum_{k=0..n} T(n, k) = 2^(n + 2) - (5*n + 1) - 2*[n=0] = A132734(n). (End)
EXAMPLE
First few rows of the triangle are:
1;
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 11, 19, 11, 1;
1, 15, 35, 35, 15, 1;
1, 19, 55, 75, 55, 19, 1;
...
MATHEMATICA
T[n_, k_]:= If[k==0 || k==n, 1, 4*Binomial[n, k] - 5];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 14 2021 *)
PROG
(PARI) t(n, k) = 4*binomial(n, k) + 2*((k==0) || (k==n)) - 5*(k<=n); \\ Michel Marcus, Feb 12 2014
(Sage)
def T(n, k): return 1 if (k==0 or k==n) else 4*binomial(n, k) - 5
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 14 2021
(Magma)
T:= func< n, k | k eq 0 or k eq n select 1 else 4*Binomial(n, k) - 5 >;
[T(n, k): k in [0..n], n in [0..12]]; // _G. C. Greubel, Feb 14 2021
CROSSREFS
Sequence in context: A357940 A133800 A146900 * A347971 A082039 A367505
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Aug 26 2007
EXTENSIONS
More terms from Michel Marcus, Feb 12 2014
STATUS
approved