

A099655


a[n]=A098085[n]A096215[n], difference between next and previous primes to A011974[n], the sum of two consecutive primes.


0



4, 4, 2, 2, 6, 2, 6, 2, 6, 2, 4, 6, 6, 8, 4, 4, 14, 4, 2, 10, 6, 6, 6, 10, 2, 12, 12, 12, 12, 2, 6, 6, 6, 10, 14, 4, 14, 14, 10, 4, 8, 6, 6, 8, 8, 10, 6, 8, 8, 2, 12, 8, 8, 6, 12, 18, 18, 10, 6, 6, 6, 2, 2, 12, 12, 6, 12, 8, 10, 8, 10, 8, 4, 6, 8, 4, 14, 12, 2, 2, 14, 14, 14, 14, 2, 20, 20, 8, 10, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..90.


FORMULA

a(n)=NextPrime[p(n)+p(n+1)]PreviousPrime[p(n)+p(n+1)]


EXAMPLE

n=8, p(8)+p(9)=19+23=42,a[8]=4341=2=a(8).


MATHEMATICA

<<NumberTheory`NumberTheoryFunctions` t1=Table[PreviousPrime[Prime[n]+Prime[n+1]], {n, 1, 128}]; t2=Table[NextPrime[Prime[n]+Prime[n+1]], {n, 1, 128}]; t2t1
NextPrime[#]NextPrime[#, 1]&/@(Total/@Partition[Prime[Range[100]], 2, 1]) (* Harvey P. Dale, Mar 07 2017 *)


CROSSREFS

Cf. A098085, A096215, A011974.
Sequence in context: A105190 A002581 A161778 * A276149 A146899 A317726
Adjacent sequences: A099652 A099653 A099654 * A099656 A099657 A099658


KEYWORD

nonn


AUTHOR

Labos Elemer, Nov 17 2004


STATUS

approved



