The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099653 a(n) is the number of n-subsets (n=1,2,...,10) of the 10 decimal digits from which prime numbers can be constructed including all n distinct digits either with or without repetitions; a(n) <= binomial(10,n). 4
 5, 24, 96, 194, 246, 209, 120, 45, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS FORMULA a(n) = binomial(10,n) - binomial(6,n) - binomial(4,n); number of n-digit subsets minus "antiprime-digit subclasses" selected from {0, 2, 4, 5, 6, 8} and {0, 3, 6, 9} digit collections. EXAMPLE n=1: {11,2,3,5,7} represent the 1-subsets; a(1) = 5; n=2: A099651 includes least terms of each a(2) = 24 subsets; n=5: a(5) = binomial(10,5) - binomial(6,5) - binomial(4,5) = 210 - 6 - 0 = 246; n=6: each of the 6-subsets is good for primes except {0,2,4,5,6,8} so a(6) = 210 - 1. n=7,8,9,10: a(n) = binomial(10,n). Total number of relevant subset classes from the 1023 nonempty k-digit subsets equals 950. See also A099654. MATHEMATICA Table[5 Boole[n == 1] + Binomial[10, n] - Binomial[6, n] - Binomial[4, n], {n, 83}] (* Michael De Vlieger, Jul 24 2017 *) CROSSREFS Cf. A099651, A099654, A099756. Sequence in context: A212349 A268370 A087095 * A270126 A276139 A078820 Adjacent sequences: A099650 A099651 A099652 * A099654 A099655 A099656 KEYWORD base,nonn AUTHOR Labos Elemer, Nov 15 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 5 09:24 EST 2023. Contains 360084 sequences. (Running on oeis4.)