login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152970
A vector sequence with set row sum function: row(n)=(n+1)! and linear build up and decline function: f(n,m)=Floor[(m/n)*row(n)].
0
1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 15, 88, 15, 1, 1, 72, 287, 287, 72, 1, 1, 420, 840, 2518, 840, 420, 1, 1, 2880, 5760, 11519, 11519, 5760, 2880, 1, 1, 22680, 45360, 68040, 90718, 68040, 45360, 22680, 1, 1, 201600, 403200, 604800, 604799, 604799, 604800
OFFSET
0,5
COMMENTS
row sums (n+1)!:
{1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800,...}
FORMULA
row(n)=(n+1)!: f(n,m)=Floor[(m/n)*row(n)].
EXAMPLE
{1},
{1, 1},
{1, 4, 1},
{1, 11, 11, 1},
{1, 15, 88, 15, 1},
{1, 72, 287, 287, 72, 1},
{1, 420, 840, 2518, 840, 420, 1},
{1, 2880, 5760, 11519, 11519, 5760, 2880, 1},
{1, 22680, 45360, 68040, 90718, 68040, 45360, 22680, 1},
{1, 201600, 403200, 604800, 604799, 604799, 604800, 403200, 201600, 1},
{1, 1995840, 3991680, 5987520, 7983360, -2, 7983360, 5987520, 3991680, 1995840, 1}
MATHEMATICA
Clear[v, n, row, f]; row[n_] = (n+1);
f[n_, m_] = Floor[(m/n)*row[n]/2]; v[0] = {1}; v[1] = {1, 1};
v[n_] := v[n] = If[Mod[n, 2] == 0, Join[{1}, Table[ f[n, m], {m, 1, Floor[ n/2] - 1}], {row[n] - 2*Sum[ f[n, m], {m, 1, Floor[n/2] - 1}] - 2}, Table[ f[n, m], {m, Floor[n/ 2] - 1, 1, -1}], { 1}],
Join[{1}, Table[ f[n, m], {m, 1, Floor[n/2] - 1}], {row[n]/2 - Sum[ f[n, m], { m, 1, Floor[n/2] - 1}] - 1, row[n]/ 2 - Sum[ f[n, m], {m, 1, Floor[ n/2] - 1}] - 1}, Table[ f[n, m], {m, Floor[n/ 2] - 1, 1, -1}], {1}]];
Table[v[n], {n, 0, 10}]; Flatten[%]
CROSSREFS
Sequence in context: A152938 A154096 A146898 * A154986 A154983 A324916
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Dec 16 2008
STATUS
approved