The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A154983 Triangle T(n, k, m) = coefficients of p(x, n, m) where p(x,n,m) = (x+1)*p(x, n-1, m) + (2^(m+n-1) + 2^(n-2)*[n>=3])*x*p(x, n-2, m) and m=0, read by rows. 4
 1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 24, 70, 24, 1, 1, 49, 358, 358, 49, 1, 1, 98, 1559, 4076, 1559, 98, 1, 1, 195, 6361, 40003, 40003, 6361, 195, 1, 1, 388, 25372, 345692, 862598, 345692, 25372, 388, 1, 1, 773, 100640, 2813688, 16569442, 16569442, 2813688, 100640, 773, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are: {1, 2, 6, 24, 120, 816, 7392, 93120, 1605504, 38969088, 1310965248, ...}. LINKS G. C. Greubel, Rows n = 0..50 of the triangle, flattened FORMULA T(n, k, m) = coefficients of p(x, n, m) where p(x,n,m) = (x+1)*p(x, n-1, m) + (2^(m+n-1) + 2^(n-2)*[n>=3])*x*p(x, n-2, m) and m=0. T(n, k, m) = T(n-1, k, m) + T(n-1, k-1, m) + (2^(n+m-1) + 2^(n-2)*[n>=3])*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m=0. - G. C. Greubel, Mar 01 2021 EXAMPLE Triangle begins as:   1;   1,   1;   1,   4,      1;   1,  11,     11,       1;   1,  24,     70,      24,        1;   1,  49,    358,     358,       49,        1;   1,  98,   1559,    4076,     1559,       98,       1;   1, 195,   6361,   40003,    40003,     6361,     195,      1;   1, 388,  25372,  345692,   862598,   345692,   25372,    388,   1;   1, 773, 100640, 2813688, 16569442, 16569442, 2813688, 100640, 773, 1; MATHEMATICA (* First program *) p[x_, n_, m_]:= p[x, n, m] = If[n<2, n*x+1, (x+1)*p[x, n-1, m] + 2^(m+n-1)*x*p[x, n-2, m] + Boole[n>=3]*2^(n-2)*x*p[x, n-2, m] ]; Table[CoefficientList[ExpandAll[p[x, n, 0]], x], {n, 0, 10}]//Flatten (* modified by G. C. Greubel, Mar 01 2021 *) (* Second program *) T[n_, k_, m_]:= T[n, k, m] = If[k==0 || k==n, 1, T[n-1, k, m] + T[n-1, k-1, m] +(2^(m+n-1) + Boole[n>=3]*2^(n-2))*T[n-2, k-1, m] ]; Table[T[n, k, 0], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 01 2021 *) PROG (Sage) def T(n, k, m):     if (k==0 or k==n): return 1     elif (n<3): return T(n-1, k, m) + T(n-1, k-1, m) + 2^(n+m-1)*T(n-2, k-1, m)     else: return T(n-1, k, m) + T(n-1, k-1, m) + (2^(n+m-1) +2^(n-2))*T(n-2, k-1, m) flatten([[T(n, k, 0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 01 2021 (Magma) function T(n, k, m)   if k eq 0 or k eq n then return 1;   elif (n lt 3) then return T(n-1, k, m) + T(n-1, k-1, m) + 2^(n+m-1)*T(n-2, k-1, m);   else return T(n-1, k, m) + T(n-1, k-1, m) + (2^(n+m-1)+2^(n-2))*T(n-2, k-1, m);   end if; return T; end function; [T(n, k, 0): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 01 2021 CROSSREFS Cf. this sequence (m=0), A154984 (m=1), A154985 (m=3). Cf. A154979, A154980, A154982, A154986. Sequence in context: A146898 A152970 A154986 * A324916 A156534 A168287 Adjacent sequences:  A154980 A154981 A154982 * A154984 A154985 A154986 KEYWORD nonn,tabl AUTHOR Roger L. Bagula, Jan 18 2009 EXTENSIONS Edited by G. C. Greubel, Mar 01 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 17:01 EST 2021. Contains 349596 sequences. (Running on oeis4.)