login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154096
Triangular sequence: f(n) = Product[Prime[a]*k + Prime[b], {k,0,n}]; a = 2; b = 1; t(n,m) = Numerator[f(n)/(f(n-m)*f(m))].
2
1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 7, 77, 7, 1, 1, 17, 119, 119, 17, 1, 1, 2, 17, 119, 17, 2, 1, 1, 23, 23, 391, 391, 23, 23, 1, 1, 13, 299, 299, 5083, 299, 299, 13, 1, 1, 29, 377, 8671, 8671, 8671, 8671, 377, 29, 1, 1, 16, 58, 1508, 17342, 69368, 17342, 1508, 58, 16, 1
OFFSET
0,5
FORMULA
f(n) = Product[Prime[a]*k + Prime[b], {k,0,n}]; a = 2; b = 1; t(n,m) = Numerator[f(n)/(f(n-m)*f(m))].
EXAMPLE
{1},
{1, 1},
{1, 4, 1},
{1, 11, 11, 1},
{1, 7, 77, 7, 1},
{1, 17, 119, 119, 17, 1},
{1, 2, 17, 119, 17, 2, 1},
{1, 23, 23, 391, 391, 23, 23, 1},
{1, 13, 299, 299, 5083, 299, 299, 13, 1},
{1, 29, 377, 8671, 8671, 8671, 8671, 377, 29, 1},
{1, 16, 58, 1508, 17342, 69368, 17342, 1508, 58, 16, 1}.
MATHEMATICA
f[n_] = Product[Prime[a]*k + Prime[b], {k, 0, n}];
t[n_, m_] = FullSimplify[f[n]/(f[n - m]*f[m])];
a = 2; b = 1; Table[Table[Numerator[t[n, m]], {m, 0, n}], {n, 0, 10}]//Flatten
CROSSREFS
Cf. A154097.
Sequence in context: A287532 A112500 A152938 * A146898 A152970 A154986
KEYWORD
nonn,tabl,frac
AUTHOR
Roger L. Bagula, Jan 04 2009
STATUS
approved