login
A152968
a(n) = A139251(n+1)/2.
17
1, 2, 2, 2, 4, 6, 4, 2, 4, 6, 6, 8, 14, 16, 8, 2, 4, 6, 6, 8, 14, 16, 10, 8, 14, 18, 20, 30, 44, 40, 16, 2, 4, 6, 6, 8, 14, 16, 10, 8, 14, 18, 20, 30, 44, 40, 18, 8, 14, 18, 20, 30, 44, 42, 28, 30, 46, 56, 70, 104, 128, 96, 32, 2
OFFSET
1,2
COMMENTS
Also, first differences of toothpicks numbers A152998. [From Omar E. Pol, Jan 02 2009]
LINKS
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
FORMULA
Write n = 2^i +j, 0 <= j < 2^i; then a(n) = Sum_k 2^(wt(j+k)-k)*binomial(wt(j+k),k). except that a(2^r-1) = 2^(r-1). - N. J. A. Sloane, Jun 03 2009, Jul 16 2009
G.f.: x*(Prod(1+x^(2^k-1)+2*x^(2^k),k=0..oo)-1)/(1+2*x). - N. J. A. Sloane, Jun 05 2009
EXAMPLE
Triangle begins:
.1;
.2,2;
.2,4,6,4;
.2,4,6,6,8,14,16,8;
.2,4,6,6,8,14,16,10,8,14,18,20,30,44,40,16;
....
Rows approach A151688. - N. J. A. Sloane, Jun 03 2009
KEYWORD
nonn
AUTHOR
Omar E. Pol, Dec 16 2008, Dec 20 2008
STATUS
approved