login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152965
Twice 12-gonal numbers: a(n) = 2*n*(5*n-4).
5
0, 2, 24, 66, 128, 210, 312, 434, 576, 738, 920, 1122, 1344, 1586, 1848, 2130, 2432, 2754, 3096, 3458, 3840, 4242, 4664, 5106, 5568, 6050, 6552, 7074, 7616, 8178, 8760, 9362, 9984, 10626, 11288, 11970, 12672, 13394, 14136, 14898, 15680, 16482, 17304, 18146, 19008
OFFSET
0,2
FORMULA
a(n) = 2*A051624(n).
From Vincenzo Librandi, Jul 10 2012: (Start)
G.f.: 2*x*(1+9*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: 2*exp(x)*x*(1 + 5*x).
a(n) = n + A051874(n). (End)
MATHEMATICA
Table[10*n^2-8*n, {n, 0, 50}] (* Vincenzo Librandi, Jul 10 2012 *)
LinearRecurrence[{3, -3, 1}, {0, 2, 24}, 60] (* Harvey P. Dale, Apr 18 2016 *)
PROG
(Magma) [10*n^2-8*n: n in [0..50]]; // Klaus Brockhaus, Nov 27 2010
(PARI) a(n)=2*n*(5*n-4) \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. A051624 (12-gonal numbers), A051874.
Cf. numbers of the form n*(n*k - k + 4)/2 listed in A226488 (this sequence is the case k=20). - Bruno Berselli, Jun 10 2013
Sequence in context: A292162 A068878 A100918 * A345692 A139284 A003614
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Dec 21 2008
STATUS
approved