login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Twice 12-gonal numbers: a(n) = 2*n*(5*n-4).
5

%I #40 Oct 05 2024 04:31:40

%S 0,2,24,66,128,210,312,434,576,738,920,1122,1344,1586,1848,2130,2432,

%T 2754,3096,3458,3840,4242,4664,5106,5568,6050,6552,7074,7616,8178,

%U 8760,9362,9984,10626,11288,11970,12672,13394,14136,14898,15680

%N Twice 12-gonal numbers: a(n) = 2*n*(5*n-4).

%H Vincenzo Librandi, <a href="/A152965/b152965.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 2 * A051624(n).

%F G.f.: 2*x*(1+9*x)/(1-x)^3. - _Vincenzo Librandi_, Jul 10 2012

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - _Vincenzo Librandi_, Jul 10 2012

%t Table[10*n^2-8*n,{n,0,50}] (* _Vincenzo Librandi_, Jul 10 2012 *)

%t LinearRecurrence[{3,-3,1},{0,2,24},60] (* _Harvey P. Dale_, Apr 18 2016 *)

%o (Magma) [10*n^2-8*n: n in [0..50]]; // _Klaus Brockhaus_, Nov 27 2010

%o (PARI) a(n)=2*n*(5*n-4) \\ _Charles R Greathouse IV_, Oct 07 2015

%Y Cf. A051624 (12-gonal numbers).

%Y Cf. numbers of the form n*(n*k - k + 4)/2 listed in A226488 (this sequence is the case k=20). - _Bruno Berselli_, Jun 10 2013

%K easy,nonn

%O 0,2

%A _Omar E. Pol_, Dec 21 2008