Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #2 Mar 30 2012 17:34:27
%S 1,1,1,1,4,1,1,11,11,1,1,8,12,8,1,1,17,20,20,17,1,1,12,47,40,47,12,1,
%T 1,23,65,107,107,65,23,1,1,16,56,112,140,112,56,16,1,1,29,72,168,252,
%U 252,168,72,29,1,1,20,137,240,420,504,420,240,137,20,1
%N Lower polynomial approximation of Eulerian numbers: t0(n,m)=If[Mod[2*Binomial[n, m], 2] - Mod[Binomial[n, m], 2] == 0, Binomial[n, m]/2, Binomial[n, m] + 1]; p(x,n)=If[n == 0, 1, (x + 1)^n + Sum[t0(n,m)*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]].
%C Row sums are:{1, 2, 6, 24, 30, 76, 160, 392, 510, 1044, 2140}. The effort here was to match the modulo two behavior to the Sierpinski gasket while adding a term polynomial.
%F t0(n,m)=If[Mod[2*Binomial[n, m], 2] - Mod[Binomial[n, m], 2] == 0, Binomial[n, m]/2, Binomial[n, m] + 1]; p(x,n)=If[n == 0, 1, (x + 1)^n + Sum[t0(n,m)*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]]; t(n,m)=coefficients(p(x,n)).
%e {1}, {1, 1}, {1, 4, 1}, {1, 11, 11, 1}, {1, 8, 12, 8, 1}, {1, 17, 20, 20, 17, 1}, {1, 12, 47, 40, 47, 12, 1}, {1, 23, 65, 107, 107, 65, 23, 1}, {1, 16, 56, 112, 140, 112, 56, 16, 1}, {1, 29, 72, 168, 252, 252, 168, 72, 29, 1}, {1, 20, 137, 240, 420, 504, 420, 240, 137, 20, 1}
%t Clear[t, p, x, n]; t[n_, m_] = If[Mod[2*Binomial[n, m], 2] - Mod[Binomial[n, m], 2] == 0, Binomial[n, m]/2, Binomial[n, m] + 1]; p[x_, n_] = If[n == 0, 1, (x + 1)^n + Sum[t[n, m]*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]]; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; Flatten[%]
%K nonn
%O 0,5
%A _Roger L. Bagula_, Nov 02 2008