login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A142470
Triangle T(n, k) = ( (k+2)/(2*binomial(k+2, 2)^2) )*binomial(n, k)^2*binomial(n+1, k)*binomial(n+2, k), read by rows.
1
1, 1, 1, 1, 8, 1, 1, 30, 30, 1, 1, 80, 300, 80, 1, 1, 175, 1750, 1750, 175, 1, 1, 336, 7350, 19600, 7350, 336, 1, 1, 588, 24696, 144060, 144060, 24696, 588, 1, 1, 960, 70560, 790272, 1728720, 790272, 70560, 960, 1, 1, 1485, 178200, 3492720, 14669424, 14669424, 3492720, 178200, 1485, 1
OFFSET
0,5
COMMENTS
Row sums are 1, 2, 10, 62, 462, 3852, 34974, 338690, 3452306, 36683660, 403472368, ...
From Peter Bala, May 08 2012: (Start)
Define the action of the operator L on a sequence { a(i) }_{0<=i<=n} by L{ a(i) }_{0<=i<=n} = { a(i)^2 - a(i-1)*a(i+1) }_{0<=i<=n} with the conventions a(-1) = a(n+1) = 0. Extend the action of L to a lower triangular array T by letting L act on the rows of T. Then L acting on Pascal's triangle A007318 produces the triangle of Narayana numbers A001263 and L applied to A001263 produces the present triangle.
Since the Narayana polynomials are real-rooted it follows by a theorem of Branden that the row polynomials of this array are also real-rooted.
(End)
LINKS
Petter Brändén, Iterated sequences and the geometry of zeros, arXiv:0909.1927 [math.CO], 2009-2010; J. Reine Angew. Math. 658 (2011), 115-131.
FORMULA
Let f(n, k) = binomial(n, k)*Product_{j=1.2} ( j!*(n+j)!/((k+j)!*(n-k+j)!) ), then T(n, k) = 2^(k-n)*f(n, k)*Sum_{j=k..n} binomial(n, j)*binomial(j, k) = binomial(n, k)*f(n, k).
From Peter Bala, May 08 2012: (Start)
T(n, k) = C(n, k)^2 * Product {i=1..2} i!*(n+i)!/((k+i)!*(n-k+i)!) = C(n, k)*C(n+2, k)*C(n+2, k+1)*C(n+2, k+2)/(C(n+2, 1)*C(n+2, 2)).
T(n, k) = 2/((n+1)*(n+2)*(n+3))*C(n, k)*C(n+1, k)*C(n+2, k+2)*C(n+3, k+1) = C(n, k)*A056939(n, k).
(End)
T(n, k) = ( (k+2)/(2*binomial(k+2, 2)^2) )*binomial(n, k)^2*binomial(n+1, k)*binomial(n+2, k). - G. C. Greubel, Apr 03 2021
EXAMPLE
The triangle begins as:
1;
1, 1;
1, 8, 1;
1, 30, 30, 1;
1, 80, 300, 80, 1;
1, 175, 1750, 1750, 175, 1;
1, 336, 7350, 19600, 7350, 336, 1;
1, 588, 24696, 144060, 144060, 24696, 588, 1;
1, 960, 70560, 790272, 1728720, 790272, 70560, 960, 1;
1, 1485, 178200, 3492720, 14669424, 14669424, 3492720, 178200, 1485, 1;
MATHEMATICA
f[n_, k_]:= f[n, k]= Binomial[n, k]*Product[j!*(n+j)!/((k+j)!*(n-k+j)!), {j, 1, 2}];
T[n_, k_]:= Binomial[n, k]*f[n, k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 03 2021 *)
PROG
(Magma)
A142470:= func< n, k | ( (k+2)/(2*Binomial(k+2, 2)^2) )*Binomial(n, k)^2*Binomial(n+1, k)*Binomial(n+2, k) >;
[A142470(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 03 2021
(Sage)
def A142470(n, k): return (2/((k+1)^2*(k+2)))*Binomial(n, k)^2*Binomial(n+1, k)*Binomial(n+2, k)
flatten([[A142470(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 03 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Sep 20 2008
EXTENSIONS
Edited by G. C. Greubel, Apr 03 2021
STATUS
approved