login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168523
Triangle of coefficients of g.f. a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = -1, b = 1, c = 1.
3
1, 1, 1, 1, 8, 1, 1, 31, 31, 1, 1, 98, 290, 98, 1, 1, 289, 1974, 1974, 289, 1, 1, 836, 11719, 25944, 11719, 836, 1, 1, 2419, 64929, 275307, 275307, 64929, 2419, 1, 1, 7046, 346192, 2573466, 4831134, 2573466, 346192, 7046, 1, 1, 20677, 1804144, 22163080, 70723522, 70723522, 22163080, 1804144, 20677, 1
OFFSET
0,5
FORMULA
From G. C. Greubel, Mar 19 2022: (Start)
G.f.: a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = -1, b = 1, c = 1.
T(n, n-k) = T(n, k). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 8, 1;
1, 31, 31, 1;
1, 98, 290, 98, 1;
1, 289, 1974, 1974, 289, 1;
1, 836, 11719, 25944, 11719, 836, 1;
1, 2419, 64929, 275307, 275307, 64929, 2419, 1;
1, 7046, 346192, 2573466, 4831134, 2573466, 346192, 7046, 1;
1, 20677, 1804144, 22163080, 70723522, 70723522, 22163080, 1804144, 20677, 1;
MATHEMATICA
T[n_, a_, b_, c_]:= CoefficientList[Series[a*(1+x)^n + b*(1-x)^(n+2)* PolyLog[-n-1, x]/x + 2^n*c*(1-x)^(n+1)*LerchPhi[x, -n, 1/2], {x, 0, 30}], x];
Table[T[n, -1, 1, 1], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Mar 19 2022 *)
PROG
(Sage)
m=12
def LerchPhi(x, s, a): return sum( x^j/(j+a)^s for j in (0..3*m) )
def p(n, x, a, b, c): return a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2)
def T(n, k, a, b, c): return ( p(n, x, a, b, c) ).series(x, n+1).list()[k]
flatten([[T(n, k, -1, 1, 1) for k in (0..n)] for n in (0..m)]) # G. C. Greubel, Mar 19 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Nov 28 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 19 2022
STATUS
approved