login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141696
Triangle read by rows, T(n, k) = ( ( 6 * Sum_{j=0..k+1} (-1)^j * binomial(n+1, j) * (k-j+1)^n ) - 4 * binomial(n-1, k) ) / 2.
2
1, 1, 1, 1, 8, 1, 1, 27, 27, 1, 1, 70, 186, 70, 1, 1, 161, 886, 886, 161, 1, 1, 348, 3543, 7208, 3543, 348, 1, 1, 727, 12837, 46787, 46787, 12837, 727, 1, 1, 1490, 43768, 264590, 468430, 264590, 43768, 1490, 1, 1, 3021, 143448, 1365408, 3930810
OFFSET
1,5
EXAMPLE
{1},
{1, 1},
{1, 8, 1},
{1, 27, 27, 1},
{1, 70, 186, 70, 1},
{1, 161, 886, 886, 161, 1},
{1, 348, 3543, 7208, 3543, 348, 1},
{1, 727, 12837, 46787, 46787, 12837, 727, 1},
{1, 1490, 43768, 264590, 468430, 264590, 43768, 1490, 1},
{1, 3021, 143448, 1365408, 3930810, 3930810, 1365408, 143448, 3021, 1}
MATHEMATICA
i = 4; l = 6; Table[Table[(l*Sum[(-1)^j Binomial[n + 1, j](k + 1 -j)^n, {j, 0, k + 1}] - i*Binomial[n - 1, k])/2, {k, 0, n - 1}], {n, 1, 10}]; Flatten[%]
PROG
(PARI) {t(n, k) = (6*sum(j=0, k+1, (-1)^j*binomial(n+1, j)*(k-j+1)^n) - 4* binomial(n-1, k))/2};
for(n=1, 10, for(k=0, n-1, print1(t(n, k), ", "))) \\ G. C. Greubel, Jun 03 2018
CROSSREFS
Cf. Eulerian numbers (A008292) and Pascal's triangle (A007318).
Cf. A141697.
Sequence in context: A176283 A323324 A181543 * A178122 A142470 A168523
KEYWORD
nonn,easy,less,tabl
AUTHOR
Roger L. Bagula, Sep 11 2008
EXTENSIONS
Edited by the Associate Editors of the OEIS, Jun 10 2018
STATUS
approved