The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A142473 A division triangle sequence of the Stirling numbers of the first kind by the binomial ( Pascal's triangle): t(n,m)=n!*StirlingS1[n, m]/Binomial[n, m]. 0
 1, -1, 2, 4, -6, 6, -36, 44, -36, 24, 576, -600, 420, -240, 120, -14400, 13152, -8100, 4080, -1800, 720, 518400, -423360, 233856, -105840, 42000, -15120, 5040, -25401600, 18817920, -9455040, 3898944, -1411200, 463680, -141120, 40320, 1625702400, -1104606720, 510295680, -193777920, 64653120 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Row sums are: {1, 1, 4, -4, 276, -6348, 254976, -13188096, 887086080, -74869297920}. REFERENCES t(n,m)=n!*StirlingS1[n, m]/Binomial[n, m]. LINKS FORMULA t(n,m)=n!*StirlingS1[n, m]/Binomial[n, m]. EXAMPLE {1}, {-1, 2}, {4, -6, 6}, {-36, 44, -36, 24}, {576, -600, 420, -240, 120}, {-14400, 13152, -8100, 4080, -1800, 720}, {518400, -423360, 233856, -105840, 42000, -15120, 5040}, {-25401600, 18817920, -9455040, 3898944, -1411200, 463680, -141120, 40320}, {1625702400, -1104606720, 510295680, -193777920, 64653120, -19595520, 5503680, -1451520, 362880}, {-131681894400, 82783088640, -35462448000, 12505190400, -3878280000, 1093357440, -285768000, 70156800, -16329600, 3628800} MATHEMATICA t[n_, m_] = n!*StirlingS1[n, m]/Binomial[n, m]; Table[Table[t[n, m], {m, 1, n}], {n, 1, 10}]; Flatten[%] CROSSREFS Sequence in context: A286894 A225187 A281485 * A132426 A072646 A091476 Adjacent sequences:  A142470 A142471 A142472 * A142474 A142475 A142476 KEYWORD sign,uned AUTHOR Roger L. Bagula and Gary W. Adamson, Sep 21 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 00:34 EDT 2020. Contains 336309 sequences. (Running on oeis4.)