Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Apr 04 2021 00:50:15
%S 1,1,1,1,8,1,1,30,30,1,1,80,300,80,1,1,175,1750,1750,175,1,1,336,7350,
%T 19600,7350,336,1,1,588,24696,144060,144060,24696,588,1,1,960,70560,
%U 790272,1728720,790272,70560,960,1,1,1485,178200,3492720,14669424,14669424,3492720,178200,1485,1
%N Triangle T(n, k) = ( (k+2)/(2*binomial(k+2, 2)^2) )*binomial(n, k)^2*binomial(n+1, k)*binomial(n+2, k), read by rows.
%C Row sums are 1, 2, 10, 62, 462, 3852, 34974, 338690, 3452306, 36683660, 403472368, ...
%C From _Peter Bala_, May 08 2012: (Start)
%C Define the action of the operator L on a sequence { a(i) }_{0<=i<=n} by L{ a(i) }_{0<=i<=n} = { a(i)^2 - a(i-1)*a(i+1) }_{0<=i<=n} with the conventions a(-1) = a(n+1) = 0. Extend the action of L to a lower triangular array T by letting L act on the rows of T. Then L acting on Pascal's triangle A007318 produces the triangle of Narayana numbers A001263 and L applied to A001263 produces the present triangle.
%C Since the Narayana polynomials are real-rooted it follows by a theorem of Branden that the row polynomials of this array are also real-rooted.
%C (End)
%H G. C. Greubel, <a href="/A142470/b142470.txt">Rows n = 0..50 of the triangle, flattened</a>
%H Petter Brändén, <a href="https://arxiv.org/abs/0909.1927">Iterated sequences and the geometry of zeros</a>, arXiv:0909.1927 [math.CO], 2009-2010; J. Reine Angew. Math. 658 (2011), 115-131.
%F Let f(n, k) = binomial(n, k)*Product_{j=1.2} ( j!*(n+j)!/((k+j)!*(n-k+j)!) ), then T(n, k) = 2^(k-n)*f(n, k)*Sum_{j=k..n} binomial(n, j)*binomial(j, k) = binomial(n, k)*f(n, k).
%F From Peter Bala, May 08 2012: (Start)
%F T(n, k) = C(n, k)^2 * Product {i=1..2} i!*(n+i)!/((k+i)!*(n-k+i)!) = C(n, k)*C(n+2, k)*C(n+2, k+1)*C(n+2, k+2)/(C(n+2, 1)*C(n+2, 2)).
%F T(n, k) = 2/((n+1)*(n+2)*(n+3))*C(n, k)*C(n+1, k)*C(n+2, k+2)*C(n+3, k+1) = C(n, k)*A056939(n, k).
%F (End)
%F T(n, k) = ( (k+2)/(2*binomial(k+2, 2)^2) )*binomial(n, k)^2*binomial(n+1, k)*binomial(n+2, k). - _G. C. Greubel_, Apr 03 2021
%e The triangle begins as:
%e 1;
%e 1, 1;
%e 1, 8, 1;
%e 1, 30, 30, 1;
%e 1, 80, 300, 80, 1;
%e 1, 175, 1750, 1750, 175, 1;
%e 1, 336, 7350, 19600, 7350, 336, 1;
%e 1, 588, 24696, 144060, 144060, 24696, 588, 1;
%e 1, 960, 70560, 790272, 1728720, 790272, 70560, 960, 1;
%e 1, 1485, 178200, 3492720, 14669424, 14669424, 3492720, 178200, 1485, 1;
%t f[n_, k_]:= f[n, k]= Binomial[n, k]*Product[j!*(n+j)!/((k+j)!*(n-k+j)!), {j,1,2}];
%t T[n_, k_]:= Binomial[n, k]*f[n, k];
%t Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by _G. C. Greubel_, Apr 03 2021 *)
%o (Magma)
%o A142470:= func< n,k | ( (k+2)/(2*Binomial(k+2, 2)^2) )*Binomial(n, k)^2*Binomial(n+1, k)*Binomial(n+2, k) >;
%o [A142470(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Apr 03 2021
%o (Sage)
%o def A142470(n, k): return (2/((k+1)^2*(k+2)))*Binomial(n, k)^2*Binomial(n+1, k)*Binomial(n+2, k)
%o flatten([[A142470(n, k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Apr 03 2021
%Y Cf. A001263, A008459, A056939.
%K nonn,tabl
%O 0,5
%A _Roger L. Bagula_, Sep 20 2008
%E Edited by _G. C. Greubel_, Apr 03 2021